1 4 N ov 2 00 8 ON SOME MODULAR REPRESENTATIONS OF THE BOREL SUBGROUP OF GL 2 ( Q p ) by Laurent
نویسنده
چکیده
— Colmez has given a recipe to associate a smooth modular representation Ω(W ) of the Borel subgroup of GL2(Qp) to a Fp-representation W of Gal(Qp/Qp) by using Fontaine’s theory of (φ,Γ)-modules. We compute Ω(W ) explicitly and we prove that if W is irreducible and dim(W ) = 2, then Ω(W ) is the restriction to the Borel subgroup of GL2(Qp) of the supersingular representation associated to W by Breuil’s correspondence. Résumé. — Colmez a donné une recette permettant d’associer une représentation modulaire Ω(W ) du sous-groupe de Borel de GL2(Qp) à une Fp-représentationW de Gal(Qp/Qp) en utilisant la théorie des (φ,Γ)-modules de Fontaine. Nous déterminons Ω(W ) explicitement et nous montrons que siW est irréductible et dim(W ) = 2, alors Ω(W ) est la restriction au sous-groupe de Borel de GL2(Qp) de la représentation supersingulière associée à W par la correspondance de Breuil.
منابع مشابه
1 N ov 2 00 8 ON SOME MODULAR REPRESENTATIONS OF THE BOREL SUBGROUP OF GL 2 ( Q p )
— Colmez has given a recipe to associate a smooth modular representation Ω(W ) of the Borel subgroup of GL2(Qp) to a Fp-representation W of Gal(Qp/Qp) by using Fontaine’s theory of (φ,Γ)-modules. We compute Ω(W ) explicitly and we prove that if W is irreducible and dim(W ) = 2, then Ω(W ) is the restriction to the Borel subgroup of GL2(Qp) of the supersingular representation associated to W by ...
متن کاملO ct 2 00 8 ON SOME MODULAR REPRESENTATIONS OF THE BOREL SUBGROUP OF GL 2 ( Q p )
— Colmez has given a recipe to associate a smooth modular representation Ω(W ) of the Borel subgroup of GL2(Qp) to a Fp-representation W of Gal(Qp/Qp) by using Fontaine’s theory of (φ,Γ)-modules. We compute Ω(W ) explicitly and we prove that if W is irreducible and dim(W ) = 2, then Ω(W ) is the restriction to the Borel subgroup of GL2(Qp) of the supersingular representation associated to W in ...
متن کامل1 6 M ay 2 00 9 ON SOME MODULAR REPRESENTATIONS OF THE BOREL SUBGROUP OF GL 2 ( Q p ) by
— Colmez has given a recipe to associate a smooth modular representation Ω(W ) of the Borel subgroup of GL2(Qp) to a Fp-representation W of Gal(Qp/Qp) by using Fontaine’s theory of (φ,Γ)-modules. We compute Ω(W ) explicitly and we prove that if W is irreducible and dim(W ) = 2, then Ω(W ) is the restriction to the Borel subgroup of GL2(Qp) of the supersingular representation associated to W by ...
متن کاملGlobally analytic $p$-adic representations of the pro--$p$--Iwahori subgroup of $GL(2)$ and base change, I : Iwasawa algebras and a base change map
This paper extends to the pro-$p$ Iwahori subgroup of $GL(2)$ over an unramified finite extension of $mathbb{Q}_p$ the presentation of the Iwasawa algebra obtained earlier by the author for the congruence subgroup of level one of $SL(2, mathbb{Z}_p)$. It then describes a natural base change map between the Iwasawa algebras or more correctly, as it turns out, between the global distribut...
متن کاملM ay 2 00 8 Admissible unitary completions of locally Q p - rational representations of GL 2 ( F )
Let F be a finite extension of Q p , p > 2. We construct admissible unitary completions of certain representations of GL 2 (F) on L-vector spaces, where L is a finite extension of F. When F = Q p using the results of Berger, Breuil and Colmez we obtain some results about lifting 2-dimensional mod p representations of the absolute Galois group of Q p to crystabelline representations with given H...
متن کامل